PROJECTS

Research Contents

Research Contents

PROJECTS > Research Contents

1-2 Ultra-low power electronics convergence devices

Participants
Topic 1 : development of SERS platform for various detection applications based on nanotransfer printing
Participants
  • Yeon Sik Jung, KAIST (Materials Scinece and Engineering)
Purpose
  • Formation of ultra-sensitive chemical, bio-sensor substrate on arbitrary substrates using nano-transfer printing method
Research Contents
  • Fabrication and evaluation of large area SERS substrate through nanotransfer printing
    - Replication of 8 inch wafer scale template for high throughput SERS substrate
  • development of cost-effective and high-throughput SERS platform

Expected Contribution
  • Early diagnosis of disease, Detection and analysis of toxic factor
  • Application of portable sensor

Topic 2 : Ultra-Low Power Electro Mechanical Devices
Participants
  • Jun-Bo Yoon, KAIST (Electrical Engineering)
Purpose
  • Development of a novel electronic device to reduce the power consumption, based on the standard CMOS process technology
Research Contents
  • Development of MEMS device
    - Design of MEMS devices considering forces that occur at micro-scale will be secured.
    - MEMS devices that operate at below 1V with 1μs switching speed will be developed.
    - New contact material will be studied to improve the reliability of the device.

Expected Contribution
  • Overcoming the conventional CMOS based electrical system
  • Enter the market as next generation device with ultra-low power electronics

Topic 3 : The development of an innovative ultra-low power electronic device
Participants
  • Yang-Kyu Choi, KAIST (Electrical Engineering)
Purpose
  • The development of an innovative ultra-low power electronic device.
연구내용
  • It is necessary to make new devices that have high on-current and very low off-current in low operating voltage. A vertically integrated multiple channel-based field-effect transistor (FET) with the highest number of nanowires is developed on a bulk silicon substrate without use of wet etching. The advantage of GAA device using nanowire is that it can solve problems related with short channel effect and power consumption problem. However, in the case of SOI wafer, the producing cost can be high. Moreover, the driving current is increased by 5-fold due to the inherent vertically stacked five-level nanowires, thus showing good feasibility of three-dimensional integration-based high performance transistor. The developed fabrication process, which is simple and reproducible, is used to create multiple stiction-free and uniformly sized nanowires with the aid of the one-route all-dry etching process (ORADEP). Furthermore, the proposed FET is revamped to create nonvolatile memory with the adoption of a charge trapping layer for enhanced practicality. Thus, this research suggests an ultimate design for the end-of-the-roadmap devices to overcome the limits of scaling.

Expected Contribution
  • The proposed electronic devices can be used in a memory and logic that demand on high reliability and ultra-low power consumption. Elaborately, the demonstration of such a device is meaningful in view of the suppression of the short-channel effects induced static power consumption, the enhancement of the performance, and the effective scalability. Furthermore, an application to NVM using the device was successfully introduced with the achievement of stable memory functions such as a large memory window, a robust retention time, and reliable witching endurance. The findings here are expected to be effective with regard to the development of highly integrated 3-D NVM created by means of a fully CMOS compatible process. Thus, this research suggests an optimum configuration for end-of-the-roadmap devices aimed at versatile future electronics. Ultimately, through these technologies, great economical effect and improved qualities of products can be expected.
Topic 4 : Development of non-powered molecule detecting system for sustainable environment monitoring
Participants
  • Hungjun Kim, Yonsei Univ. (Electrical Engineering)
Purpose
  • Development of non-powered, high sensitive, large area molecule detecting system for sustainable environment monitoring
Research Contents
  • Development of non-powered molecule detecting system for sustainable environment monitoring.
    - Development of material synthesis process for efficient gas molecule detecting and evaluation of materials.
    - Manufacturing evaluation of prototype devices of non-powered molecule detecting system
    - Realization of molecule detecting system for sustainable environment monitoring system

Expected Contribution
  • Leading of next generation material area through development of synthesis process
  • Utilize monitoring system in living environment and disaster such as chemical terror and fire
Topic 5 : Low power, high speed chip-to-chip interface using dielectric waveguide
Participants
  • Hyeon-Min Bae, KAIST (Electrical Engineering)
Purpose
  • For decades, copper based interconnect has been widely adopted for various high-speed wireline communications owing to its cost/power efficiencies. However, the skin effect, caused by electromagnetic induction, exerts a fundamental limitation on the utilization of metallic interconnects for high-speed communications. As such, it is generally believed that optical interconnection will eventually substitute the entire metallic interconnects in the coming future as the data rate increases. However, the wide spread use of optical interconnects is severely challenged by overwhelming power increase over metallic interconnects and their unrealistic replacement cost. Given that, we are proposing a completely new ultra high speed/cost-effective/low power/short reach (1~2m) interconnect solution.
Research Contents
  • A low-power, high-speed chip-to-chip interface platform using dielectric waveguide.
    - Find out the optimized the structure and the dimension of dielectric waveguide and the type of dielectric material and realize it.
    - Design microstrip circuits to maximize the power transfer to dielectric waveguide.
    - Design mm-Wave high frequency package model.
    - Design low-power CMOS 60GHz transceiver.
    - Newly developed solution will meet challenging key specifications including:
      a) Cost of <10¢/pin can be achieved via low cost material and manufacturing processes
      b) Energy of <10pJ/bit can be achieved since power-hungry RX equalizer is not necessary
      c) Data rate of <25Gb/s through process scaling
      d) High density through no E/O and O/E conversion

Expected Contribution
  • A solely realizable cost-efficient and low-power solution for 100GE chip-to-chip interface and next generation of 400GE market.
  • A number of target applications: Data center, Memory link, Thunderbolt/USB, etc.
Topic 6 : Nanophotonic light sources for high-speed data transfer in smart sensor platforms
Participants
  • Kyoungsik Yu, KAIST (Electrical Engineering)
Purpose
  • We investigate integrated optoelectronic devices, such as semiconductor-based light sources and photodetectors, for high-speed data transfer in smart sensor platforms and three-dimensional integrated circuit systems.
Research Contents
  • Fundamental scaling/performance limits of integrated optoelectronic devices,such as electrically injected semiconductor lasers
  • Heterogeneous integration of compound semiconductor-based optoelectronidevices with the silicon-based electronics platform

Expected Contribution
  • Seamless integration of photonics and electronic devices for high-performance computing
  • Photonics-based biochemical sensing and imaging techniques
맨위로

Warning: Unknown: Your script possibly relies on a session side-effect which existed until PHP 4.2.3. Please be advised that the session extension does not consider global variables as a source of data, unless register_globals is enabled. You can disable this functionality and this warning by setting session.bug_compat_42 or session.bug_compat_warn to off, respectively in Unknown on line 0